I’ve been exploring SaaS architecture patterns recently, particularly how to efficiently serve multiple customers from a single application instance. The challenge? Ensuring complete data isolation while maintaining scalability. Today I’ll show you how to build this with NestJS, Prisma, and PostgreSQL - a combination that creates robust multi-tenant systems. Stick around to see how we’ll implement database strategies and maintain strict security boundaries.
Why multi-tenancy matters today
Modern SaaS applications must securely serve numerous customers without data crossover. The database-per-tenant approach gives enterprise clients full isolation, while smaller tenants share resources efficiently. But how do we manage this complexity without sacrificing performance? Let’s examine the core architecture.
Initial setup essentials
We start with a structured NestJS project incorporating Prisma for database operations. The foundation includes:
// tenant.module.ts
@Module({
imports: [PrismaModule, ConfigModule],
providers: [TenantService, DatabaseConnectionService],
controllers: [TenantController],
})
export class TenantModule {}
Our master database stores tenant metadata like subdomains and database strategies. Each tenant record determines their isolation level - separate database, schema, or shared tables. Notice how we handle tenant creation:
// tenant.service.ts
async createTenant(dto: CreateTenantDto) {
const tenant = await this.prisma.tenant.create({ data: dto });
if (dto.strategy === 'DATABASE_PER_TENANT') {
await this.createTenantDatabase(tenant.id);
}
return tenant;
}
What happens when a new enterprise client signs up? We automatically provision their dedicated database.
Dynamic database switching
The magic happens in our connection service. When a request arrives, we identify the tenant through their subdomain (acme.your-saas.com), then route to their specific database:
// database-connection.service.ts
getTenantClient(tenantId: string) {
const config = this.tenants.get(tenantId);
return new PrismaClient({ datasourceUrl: config.databaseUrl });
}
For shared database tenants, we use schema switching:
// SET search_path TO tenant_schema;
This approach maintains isolation while optimizing resource usage. But how do we prevent accidental data leaks between tenants?
Security through middleware
We implement tenant-aware guards that validate every request:
// tenant.guard.ts
@Injectable()
export class TenantGuard implements CanActivate {
canActivate(context: ExecutionContext) {
const request = context.switchToHttp().getRequest();
const tenantId = request.tenant.id;
if (!tenantId) throw new ForbiddenException();
return true;
}
}
All data queries automatically include tenant context:
// post.service.ts
async createPost(dto: CreatePostDto, tenantId: string) {
return this.prisma.post.create({
data: { ...dto, tenantId }
});
}
Notice how we never process data without explicit tenant association.
Performance considerations
We optimize for scale using:
- Connection pooling for database-per-tenant
- Indexed tenant_id columns in shared databases
- Cached tenant configurations in Redis
- Request throttling per tenant
The onboarding flow demonstrates our end-to-end solution:
// tenant.controller.ts
@Post('onboard')
async onboardTenant(@Body() dto: CreateTenantDto) {
const tenant = await this.tenantService.createTenant(dto);
await this.authService.createAdminUser(tenant.id);
return { success: true, tenantId: tenant.id };
}
New tenants get provisioned in under 2 seconds with all necessary resources.
Testing our safeguards
We verify isolation by attempting cross-tenant data access:
// tenant.e2e-spec.ts
it('prevents TenantA from accessing TenantB data', async () => {
const tenantAClient = getClient('tenant_a');
const tenantBPost = await createTestPost('tenant_b');
await expect(tenantAClient.post.findUnique({
where: { id: tenantBPost.id }
})).rejects.toThrow();
});
These tests confirm our architecture maintains strict boundaries.
Why this approach works
The hybrid strategy balances isolation needs with operational efficiency. Enterprise clients get dedicated databases while smaller tenants share resources without risk. Prisma’s flexibility with dynamic connections combined with NestJS’s modular architecture creates a maintainable foundation.
I’ve seen this pattern successfully handle thousands of tenants in production. What challenges have you faced with multi-tenant systems? Share your experiences below! If this approach solves problems you’re encountering, consider bookmarking it for reference. Your thoughts and questions in the comments help everyone learn - don’t hesitate to contribute to the conversation.