I’ve been thinking a lot about API performance lately. Not just getting endpoints to work, but making them fast, secure, and ready for real users. That’s why I want to share this complete guide on building production-ready APIs with Fastify, Prisma, and Redis. These tools work beautifully together to create something both powerful and maintainable.
Getting started is straightforward. First, set up your project with the right dependencies. Here’s what you’ll need:
npm install fastify @fastify/redis @fastify/session prisma @prisma/client
npm install -D typescript @types/node
Now, let’s configure our database with Prisma. The schema defines our data structure clearly:
model User {
id String @id @default(cuid())
email String @unique
password String
posts Post[]
createdAt DateTime @default(now())
}
model Post {
id String @id @default(cuid())
title String
content String
author User @relation(fields: [authorId], references: [id])
authorId String
createdAt DateTime @default(now())
}
Have you considered how much faster your API could be with proper caching? That’s where Redis comes in. Setting up Redis with Fastify is simple but incredibly effective:
await server.register(require('@fastify/redis'), {
host: 'localhost',
port: 6379
});
// Cache example
server.get('/posts/:id', async (request, reply) => {
const cached = await server.redis.get(`post:${request.params.id}`);
if (cached) return JSON.parse(cached);
const post = await server.prisma.post.findUnique({
where: { id: request.params.id }
});
await server.redis.setex(`post:${request.params.id}`, 3600, JSON.stringify(post));
return post;
});
Error handling is crucial for production systems. Fastify makes this clean and consistent:
server.setErrorHandler(async (error, request, reply) => {
server.log.error(error);
if (error.code === 'P2002') {
return reply.status(409).send({
error: 'Conflict',
message: 'Resource already exists'
});
}
return reply.status(500).send({
error: 'Internal Server Error',
message: 'Something went wrong'
});
});
What if you could automatically validate incoming data without writing boilerplate? Fastify’s schema validation handles this beautifully:
server.post('/users', {
schema: {
body: {
type: 'object',
required: ['email', 'password'],
properties: {
email: { type: 'string', format: 'email' },
password: { type: 'string', minLength: 8 }
}
}
}
}, async (request, reply) => {
// Your business logic here
});
Deployment considerations matter too. Environment variables help manage different configurations:
const server = Fastify({
logger: {
level: process.env.NODE_ENV === 'production' ? 'info' : 'debug',
transport: process.env.NODE_ENV !== 'production' ? {
target: 'pino-pretty',
options: { colorize: true }
} : undefined
}
});
Monitoring and logging are your best friends in production. Fastify’s built-in logger works seamlessly with this stack:
// Simple health check with logging
server.get('/health', async (request, reply) => {
server.log.info('Health check called');
return { status: 'ok', timestamp: new Date().toISOString() };
});
Building APIs that perform well under load requires thoughtful architecture. By combining Fastify’s speed, Prisma’s type safety, and Redis’s caching power, you create something truly production-ready. Each component plays its part in creating a robust, scalable system.
I’d love to hear about your experiences with these tools. What performance challenges have you faced in your projects? Share your thoughts in the comments below, and if this guide helped you, consider sharing it with other developers who might benefit.