js

Build Production GraphQL API: NestJS, Prisma & Redis Caching Complete Tutorial

Build a production-ready GraphQL API with NestJS, Prisma & Redis. Learn scalable architecture, caching, auth, and deployment best practices for high-performance APIs.

Build Production GraphQL API: NestJS, Prisma & Redis Caching Complete Tutorial

I’ve been developing APIs for years, and recently faced a challenge scaling a GraphQL service for a client. The performance bottlenecks led me to rediscover Redis caching combined with NestJS’s elegant structure. This experience inspired me to document a battle-tested approach to building production-grade GraphQL APIs. Let’s walk through the key components together.

Starting with the foundation, we configure our environment using Docker containers. Why do you think containerization became essential for modern development? Our docker-compose.yml defines PostgreSQL and Redis services, ensuring consistent environments across stages. For configuration management, I prefer NestJS’s built-in module:

// app.module.ts
import { CacheModule } from '@nestjs/cache-manager';
import { redisStore } from 'cache-manager-redis-store';

@Module({
  imports: [
    CacheModule.register({
      store: redisStore,
      host: configService.get('redis.host'),
      port: configService.get('redis.port'),
      ttl: 60, // seconds
    }),
  ],
})

Prisma forms our data layer. Notice how we model relationships like post-author connections:

model Post {
  id        String @id @default(cuid())
  title     String
  authorId  String
  author    User   @relation(fields: [authorId], references: [id])
}

model User {
  id    String @id @default(cuid())
  email String @unique
  posts Post[]
}

For resolvers, I implement granular methods with clear responsibilities. How might we optimize queries fetching nested data? Consider this resolver with dataloader integration:

// posts.resolver.ts
@Resolver(() => Post)
export class PostsResolver {
  constructor(
    private postsService: PostsService,
    private usersLoader: UsersLoader
  ) {}

  @Query(() => [Post])
  async posts() {
    return this.postsService.findAll();
  }

  @ResolveField('author', () => User)
  async author(@Parent() post: Post) {
    return this.usersLoader.load(post.authorId);
  }
}

Redis caching shines for frequently accessed data. Here’s how I cache user profiles:

// users.service.ts
async getUserById(id: string): Promise<User> {
  const cacheKey = `user:${id}`;
  const cached = await this.cacheManager.get<User>(cacheKey);
  
  if (cached) return cached;

  const user = await this.prisma.user.findUnique({ where: { id } });
  await this.cacheManager.set(cacheKey, user, 300); // 5 min TTL
  return user;
}

Authentication uses JWT with Passport integration. Notice the guard protecting mutations:

// auth.guard.ts
@Injectable()
export class GqlAuthGuard extends AuthGuard('jwt') {
  getRequest(context: ExecutionContext) {
    const ctx = GqlExecutionContext.create(context);
    return ctx.getContext().req;
  }
}

// Usage in resolver:
@Mutation(() => Post)
@UseGuards(GqlAuthGuard)
async createPost(@Args('input') input: CreatePostInput) {
  // Protected mutation
}

For real-time updates, subscriptions deliver notifications efficiently. Consider this comment subscription implementation:

@Subscription(() => Comment, {
  filter: (payload, variables) => 
    payload.commentAdded.postId === variables.postId,
})
commentAdded(@Args('postId') postId: string) {
  return this.pubSub.asyncIterator('commentAdded');
}

Testing is non-negotiable. I focus on integration tests covering critical paths:

describe('PostsResolver (e2e)', () => {
  it('fetches posts with authors', async () => {
    const response = await testApp.graphql(`
      query {
        posts {
          title
          author {
            email
          }
        }
      }
    `);
    expect(response.body.data.posts[0].author.email).toBeDefined();
  });
});

Deployment requires monitoring. I instrument endpoints with Prometheus metrics and configure health checks:

// health.controller.ts
@Get('health')
@HealthCheck()
checkHealth() {
  return this.health.check([
    () => this.db.pingCheck('database'),
    () => this.redis.check('redis'),
  ]);
}

This approach has served me well in production environments handling thousands of requests per second. The true value emerges when you see consistent sub-100ms response times during traffic spikes. What optimizations might you implement for your specific workload?

If you found this practical guide useful, please share it with colleagues facing similar API challenges. Have questions about implementation details? Let’s discuss in the comments – I’d love to hear about your production experiences and optimization techniques.

Keywords: GraphQL API NestJS, Prisma ORM tutorial, Redis caching GraphQL, NestJS GraphQL production, GraphQL authentication authorization, Prisma database schema, GraphQL resolvers optimization, Redis performance caching, GraphQL subscriptions real-time, production GraphQL deployment



Similar Posts
Blog Image
Build a Complete Rate-Limited API Gateway: Express, Redis, JWT Authentication Implementation Guide

Learn to build scalable rate-limited API gateways with Express, Redis & JWT. Master multiple rate limiting algorithms, distributed systems & production deployment.

Blog Image
NestJS WebSocket API: Build Type-Safe Real-time Apps with Socket.io and Redis Scaling

Learn to build type-safe WebSocket APIs with NestJS, Socket.io & Redis. Complete guide covers authentication, scaling, and production deployment for real-time apps.

Blog Image
Event-Driven Microservices Architecture with NestJS, RabbitMQ, and Redis: Complete Performance Guide

Learn to build scalable event-driven microservices with NestJS, RabbitMQ & Redis. Master saga patterns, distributed caching & fault tolerance for production systems.

Blog Image
Building a Complete Rate Limiting System with Redis and Node.js: From Basic Implementation to Advanced Patterns

Learn to build complete rate limiting systems with Redis and Node.js. Covers token bucket, sliding window, and advanced patterns for production APIs.

Blog Image
Build High-Performance REST APIs with Fastify, Prisma, and Redis: Complete Production Guide

Learn to build production-ready REST APIs with Fastify, Prisma & Redis. Complete guide covering setup, caching, testing, deployment & performance optimization.

Blog Image
Complete Guide: Next.js Prisma ORM Integration for Type-Safe Full-Stack Development in 2024

Learn how to integrate Next.js with Prisma ORM for type-safe, full-stack web applications. Build faster with seamless database operations and TypeScript support.