I’ve been thinking about how to protect APIs from being overwhelmed by too many requests. It’s a challenge that comes up when applications grow and start handling more traffic. Today, I’ll show you how to build a distributed rate limiter using Redis, Bull Queue, and Express.js - a solution that scales across multiple servers while maintaining accuracy.
Why did I choose this stack? Redis gives us fast in-memory storage with atomic operations, essential for counting requests in real-time. Bull Queue handles delayed processing when limits are exceeded, and Express.js provides the middleware structure to integrate everything smoothly. Together, they solve the distributed coordination problem that single-server solutions can’t handle.
Getting Started
Let’s set up our project. First, create the basic structure:
mkdir distributed-rate-limiter && cd distributed-rate-limiter
npm init -y
npm install express redis bull ioredis dotenv
Now configure TypeScript:
// tsconfig.json
{
"compilerOptions": {
"target": "ES2020",
"module": "commonjs",
"outDir": "./dist",
"rootDir": "./src",
"strict": true
}
}
Redis Connection
A reliable Redis connection is crucial. Here’s how I handle it:
// src/config/redis.ts
import Redis from 'ioredis';
import { config } from './environment';
const redis = new Redis({
host: config.redis.host,
port: config.redis.port,
maxRetriesPerRequest: 3
});
redis.on('error', (err) => {
console.error('Redis error:', err);
});
export default redis;
Implementing Token Bucket Algorithm
The token bucket allows bursts while maintaining average rates. Here’s my implementation:
// src/algorithms/TokenBucket.ts
import redis from '../config/redis';
class TokenBucket {
constructor(
private key: string,
private capacity: number,
private refillRate: number
) {}
async consume(tokens = 1): Promise<boolean> {
const now = Date.now();
const script = `
local key = KEYS[1]
local capacity = tonumber(ARGV[1])
local refillRate = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
local tokens = tonumber(ARGV[4])
local data = redis.call('HMGET', key, 'lastRefill', 'tokens')
local lastRefill = data[1] and tonumber(data[1]) or now
local currentTokens = data[2] and tonumber(data[2]) or capacity
local timePassed = math.max(now - lastRefill, 0)
local refillAmount = math.floor(timePassed * refillRate / 1000)
currentTokens = math.min(currentTokens + refillAmount, capacity)
if currentTokens >= tokens then
currentTokens = currentTokens - tokens
lastRefill = now
redis.call('HMSET', key, 'lastRefill', lastRefill, 'tokens', currentTokens)
redis.call('EXPIRE', key, math.ceil(capacity / refillRate) * 2)
return 1
end
return 0
`;
const result = await redis.eval(
script, 1, this.key,
this.capacity, this.refillRate, now, tokens
);
return result === 1;
}
}
What happens when requests exceed the limit? That’s where Bull Queue comes in.
Handling Overflow with Bull
When limits are exceeded, we queue requests for later processing:
// src/services/QueueService.ts
import Bull from 'bull';
import redisConfig from '../config/redis';
const rateLimitQueue = new Bull('rate-limit-queue', {
redis: redisConfig,
limiter: { max: 1000, duration: 5000 }
});
rateLimitQueue.process(async (job) => {
console.log('Processing queued request:', job.data);
// Add your request processing logic here
});
export const addToQueue = async (requestData: any) => {
await rateLimitQueue.add(requestData, {
attempts: 3,
backoff: { type: 'exponential', delay: 1000 }
});
};
Express Middleware Integration
Now let’s connect everything with Express middleware:
// src/middleware/rateLimiter.ts
import { Request, Response, NextFunction } from 'express';
import TokenBucket from '../algorithms/TokenBucket';
import { addToQueue } from '../services/QueueService';
export const tokenBucketLimiter = (opts: {
key: string,
capacity: number,
refillRate: number
}) => {
const bucket = new TokenBucket(opts.key, opts.capacity, opts.refillRate);
return async (req: Request, res: Response, next: NextFunction) => {
const allowed = await bucket.consume();
if (allowed) {
return next();
}
try {
await addToQueue({ path: req.path, method: req.method });
res.status(429).json({
error: 'Too many requests',
message: 'Your request has been queued for processing'
});
} catch (err) {
res.status(503).json({ error: 'Service unavailable' });
}
};
};
Testing and Optimization
How do we know our system works under pressure? I use artillery for load testing:
# load-test.yml
config:
target: "http://localhost:3000"
phases:
- duration: 60
arrivalRate: 50
name: "Warm up"
- duration: 120
arrivalRate: 200
name: "Peak load"
scenarios:
- flow:
- get:
url: "/api/protected"
Monitor Redis memory usage during tests with:
redis-cli info memory
Production Considerations
When deploying, remember to:
- Use Redis clusters for high availability
- Set appropriate TTLs on rate limit keys
- Monitor queue backlog with Bull dashboard
- Implement circuit breakers for Redis failures
What happens during Redis outages? I recommend adding a fallback to local rate limiting using a library like express-rate-limit, though this sacrifices some accuracy.
Final Thoughts
Building this system taught me that distributed coordination requires careful planning. The token bucket approach provides flexibility, while Bull ensures no request gets completely dropped during traffic spikes.
If you found this useful, please share it with others who might benefit! I’d love to hear about your experiences with rate limiting - what challenges have you faced? Leave a comment below with your thoughts or questions.